Structure-function studies of the amino-terminal region of bovine cardiac troponin T.

نویسنده

  • L S Tobacman
چکیده

The length and amino acid sequence of the amino-terminal region of troponin T (TnT) is regulated by alternative mRNA processing in both mammals and birds. To study the function of this region, three forms of bovine cardiac TnT were compared: isoforms TnT1 and TnT2, which differ by the presence or absence of residues 15-19 and TnT 39-284. TnT 39-284 was prepared by chemical cleavage of TnT1 at Cys-39. All three forms of TnT successfully reconstituted with troponin I and troponin C, resulting in troponins designated Tn1, Tn2, and TnCN. Three properties of the reconstituted troponins were compared. 1) Tn1 and TnCN had indistinguishable effects on tropomyosin polymerization. Addition of either 8 microM Tn1 or 8 microM TnCN increased the viscosity (eta rel) of 5 microM tropomyosin from 1.0 to 1.63 at 10 degrees C. 2) All of the three troponins conferred Ca2+ dependence to the MgATPase rate of myosin S-1-actin-tropomyosin. In the presence of saturating concentrations of Tn2, Tn1, or TnCN, 50% MgATPase activation occurred at pCa 6.0, 5.9, or 5.75, respectively. 3) The affinity of the Ca2+-specific binding site of reconstituted Tn1 was 50% stronger than the affinity of the same site on TnCN. These results suggest that the amino-terminal region of cardiac TnT is not a completely Ca2+-insensitive domain, but rather modulates the interaction of Ca2+ with troponin and with the thin filament. Furthermore, the effects of TnT on tropomyosin-tropomyosin binding are predominantly due to portions of TnT carboxyl-terminal to residue 38.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The heart-specific NH2-terminal extension regulates the molecular conformation and function of cardiac troponin I.

In addition to the core structure conserved in all troponin I isoforms, cardiac troponin I (cTnI) has an ∼30 amino acids NH(2)-terminal extension. This peptide segment is a heart-specific regulatory structure containing two Ser residues that are substrates of PKA. Under β-adrenergic regulation, phosphorylation of cTnI in the NH(2)-terminal extension increases the rate of myocardial relaxation. ...

متن کامل

Correlation between the Level of Creatinine, Serum Cardiac Troponines and Left Ventricle Function Tests in Patients with Chronic Renal Diseases without Acute Coronary Syndrome

Background and Objectives:  The aim of this study was to survey the relationship between the level of  creatinine,cardiac troponins serum and the function of  the left ventricle in patients with  kidney insufficiency,without acute coronary syndrome. Materialsand Methods:The sample  was150 patients with nondialysis chronic kidney disease without  acute  coronary  syndrome,  hospitalized  at  I...

متن کامل

The Importance of Intrinsically Disordered Segments of Cardiac Troponin in Modulating Function by Phosphorylation and Disease-Causing Mutations

Troponin plays a central role in regulation of muscle contraction. It is the Ca2+ switch of striated muscles including the heart and in the cardiac muscle it is physiologically modulated by PKA-dependent phosphorylation at Ser22 and 23. Many cardiomyopathy-related mutations affect Ca2+ regulation and/or disrupt the relationship between Ca2+ binding and phosphorylation. Unlike the mechanism of h...

متن کامل

NH2-terminal truncations of cardiac troponin I and cardiac troponin T produce distinct effects on contractility and calcium homeostasis in adult cardiomyocytes.

Cardiac troponin I (TnI) has an NH2-terminal extension that is an adult heart-specific regulatory structure. Restrictive proteolytic truncation of the NH2-terminal extension of cardiac TnI occurs in normal hearts and is upregulated in cardiac adaptation to hemodynamic stress or β-adrenergic deficiency. NH2-terminal truncated cardiac TnI (cTnI-ND) alters the conformation of the core structure of...

متن کامل

The C Terminus of Cardiac Troponin I Stabilizes the Ca -Activated State of Tropomyosin on Actin Filaments

Rationale: Ca control of troponin–tropomyosin position on actin regulates cardiac muscle contraction. The inhibitory subunit of troponin, cardiac troponin (cTn)I is primarily responsible for maintaining a tropomyosin conformation that prevents crossbridge cycling. Despite extensive characterization of cTnI, the precise role of its C-terminal domain (residues 193 to 210) is unclear. Mutations wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 263 6  شماره 

صفحات  -

تاریخ انتشار 1988